Ускорение это первая производная от скорости

Ускорение это первая производная от скорости

Иногда в задаче B9 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» B9.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t
ight)$, то $v$ мы можем посчитать следующим образом:

Точно так же мы можем посчитать и ускорение:

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

Нам требуется найти производную в точке 2. Давайте подставим:

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

Читайте также:  Навигатор с определением скорости

В первую очередь, вновь ищем производную:

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Тут всё перепутано. Скорость — производная координаты по времени, а ускорение — производная скорости по времени.

Не буду углубляться в дифференциальное исчисление, объясню вкратце. Если координата меняется со временем, то координата есть функция, зависящая от её аргумента, времени. Таким образом, скорость — производная этой функции. Если же координата не меняется со временем (константа), то производная будет равна нулю. Очевидно, что скорость здесь равна нулю.

В случае прямолинейного равномерного движения, производная равна константе — постоянной скорости. В случае прямолинейного равноускоренного движения, производная стремится к функции (первой степени) скорости, зависящей от времени. Производная же этой функции равна другой константе — постоянному ускорению.

Отсюда и следуют формулы для равномерного прямолинейного движения (v=S/t) и равноускоренного прямолинейного движения (v₁=v₀+a×t).

По сути, производная — предел, к которому стремится отношение приращения функции к приращению её аргумента, который стремится к нулю (отношение минимального шажка функции к минимальному шажку аргумента). Пишется как df/dx (f — функция, x — аргумент).

Читайте также:  Работа с биос при установка windows

В физике производная по времени означает то, как физическая величина меняется со временем.

Разделы: Математика

Цели урока:

  • Создать условия для осмысленного усвоения учащимися физического смысла производной.
  • Содействовать формированию умений и навыков практического использования производной для решения разнообразных физических задач.
  • Способствовать развитию математического кругозора, познавательного интереса у учащихся через раскрытие практической необходимости и теоретической значимости темы.
  • Обеспечить условия для совершенствования мыслительных умений учащихся: сравнивать, анализировать, обобщать.
  • Содействовать воспитанию интереса к математике.

Тип урока: Урок освоения новых знаний.

Формы работы: фронтальная, индивидуальная, групповая.

Содержание урока: §5 учебника пункт 21, стр. 137-142.

Оборудование: Компьютер, интерактивная доска, презентация, учебник.

Структура урока:

  1. Организационный момент, постановка цели урока
  2. Изучение нового материала
  3. Первичное закрепление нового материала
  4. Самостоятельная работа
  5. Итог урока. Рефлексия.

Ход урока

I. Организационный момент, постановка цели урока (2 мин.)

II. Изучение нового материала (10 мин.)

Учитель: На предыдущих уроках мы познакомились с правилами вычисления производных, научились находить производные линейной, степенной, тригонометрических функций. Узнали, в чем заключается геометрический смысл производной. Сегодня на уроке мы узнаем, где в физике применяется данное понятие.

Для этого вспомним определение производной (Слайд 2)

Теперь обратимся к курсу физики (Слайд 3)

Учащиеся рассуждают, вспоминают физические понятия и формулы.

Пусть тело движется по закону S(t)= f(t) Рассмотрим путь, пройденный телом за время от t до t+ Δ t, где Δt – приращение аргумента. В момент времени t телом пройден путь S(t), в момент t+Δt – путь S(t +Δt). Поэтому за время Δt тело прошло путь S(t+Δt) –S(t), т.е. мы получили приращение функции. Средняя скорость движения тела за этот промежуток времени υ==

Чем меньше промежуток времени t, тем точнее мы можем узнать, с какой скоростью движется тело в момент t. Устремив t →0, получим мгновенную скорость – числовое значение скорости в момент t этого движения.

υ= , при Δt→0 скорость – есть производная от пути по времени.

Слайд 4

Вспомним определение ускорения.

Применяя изложенный выше материал можно сделать вывод, что при t а(t)= υ’(t) ускорение – есть производная от скорости.

Далее на интерактивной доске появляются формулы силы тока, угловой скорости, ЭДС и т.д. Учащиеся дописывают мгновенные значения данных физических величин через понятие производной. (При отсутствии интерактивной доски использовать презентацию)

Читайте также:  Рабочий стол на английском языке windows

Вывод формулируют учащиеся.

Вывод: (Слайд 9) Производная – это есть скорость изменения функции. (Функции пути, координаты, скорости, магнитного потока и т.д.)

Учитель: Мы видим, что связь между количественными характеристиками самых различных процессов исследуемых физикой, техническими науками, химией, аналогична связи между путем и скоростью. Можно привести множество задач, для решения которых также необходимо находить скорость изменения некоторой функции, например: нахождение концентрации раствора в определенный момент, нахождение расхода жидкости, угловой скорости вращения тела, линейной плотности в точке и т.д. Некоторые из таких задач мы сейчас решим.

III. Закрепление полученных знаний (работа в группах) (15 мин.)

С последующим разбором у доски

Перед решением задач уточнить единицы измерения физических величин.

Задание 1 группе

Точка движется по закону s(t)=2t³-3t (s – путь в метрах, t – время в секундах). Вычислите скорость движения точки, ее ускорение в момент времени 2с

Дано: Решение:
s(t)= 2t³-3t
t=2с
______________
υ(2)=?
а(2)=?
υ(t)=s’(t)
υ(t)= (2t³-3t)’=6t²-3
υ(2)= 6·2²-3=21 м/с
a(t)=υ’(t)

а(t)=(6t²-3)’=12t
a(2)=12·2=24м/с²
Ответ: υ(2)= 21 м/с; a(2)= 24м/с²

Задание 2 группе

Маховик вращается вокруг оси по закону φ(t)= t 4 -5t. Найдите его угловую скорость ω в момент времени 2с (φ – угол вращения в радианах, ω – угловая скорость рад/с)

Дано: Решение:
φ(t)=t 4 -5t
t=2с
______________
φ(2)=?
ω(t)= φ’(t)
ω(t)=(t 4 -5t)’= 4t³-5
ω(2)=4·2³-5=32-5=27рад/c
Ответ: ω(2)= 27рад/c

Задание 3 группе

Тело массой 2 кг движется прямолинейно по закону х(t)=2-3t+2t²

Найдите скорость тела и его кинетическую энергию через 3с после начала движения. Какая сила действует на тело в этот момент времени? (t измеряется в секундах, х – в метрах)

Дано: Решение:
m=2кг
х(t)=2-3t+2t²
t=3c
______________
υ (3)=?
E=?
F=?
υ(t)= х’(t)
υ(t)=(2-3t+2t²)’=-3+4t
υ(3)= -3+4·3=9м/с

E=
E==82 Дж

F=ma
a(t)=υ’(t)
a(t)=(-3+4t)’=4м/с
F=2·4=8H
Ответ: υ(3)= 9м/с; E=82 Дж; F=8H

Задание 4

Точка совершает колебательные движения по закону х(t)=2sin3t. Докажите, что ускорение пропорционально координате х.

Дано: Решение:
х (t)= 2sin3t
______________
а(t)
a(t)=υ’(t)=х’’(t);
υ(t)=х’(t);
υ(t)=(2sin3t)’=6cos3t
a(t)=(6cos3t)’=-18 sin3t=-9·х(t)
Ответ: a(t)=-9·х(t)

IV. Самостоятельное решение задач №272, 274, 275, 277

[А.Н.Колмогоров, А.М.Абрамов и др. «Алгебра и начала анализа10-11 класс»] 12 мин

Ссылка на основную публикацию
Умные часы для детей xiaomi mi bunny
Детские смарт-часы Xiaomi, изготовленные из прочного пластика различных оттенков, предназначены для отображения текущего времени и дополнительной информации (например, о пройденной...
Телефон с камерой лучше чем у айфона
В России начинаются продажи смартфонов iPhone XS и iPhone XS Max. Цены в этот раз просто заоблачные — средняя (256...
Телефон с горизонтальной камерой
Сегодня мало кого можно удивить телефоном с двумя основными камерами. А вот сдвоенную фронтальную камеру встретишь далеко не в каждом...
Улучшить качество связи мтс
Усилитель сигнала МТС– специальный прибор, который необходим для того, чтобы предоставлять более сильный сигнал сотовой связи. Невозможно звонить или отправлять...
Adblock detector