Уравнение траектории движения тела брошенного горизонтально

Уравнение траектории движения тела брошенного горизонтально

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести. Для этого движения справедливы формулы:

u — скорость падения тела спустя время t
g — ускорение свободного падения, 9.81 (м/с?)
h — высота с которой падает тело
t — время, в течение которого продолжалось падение

  • Сопротивление воздуха в данных формулах не учитывается.
  • Ускорение свободного падения имеет приведенное значение (9.81 (м/с?)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!

Движение тела, брошенного вертикально вверх

Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением a = -g. Перемещение тела за время t представляет собой высоту подъема h.Для этого движения справедливы формулы:

U0 — начальная скорость движения тела
U — скорость падения тела спустя время t
g — ускорение свободного падения, 9.81 (м/с?)
h — высота на которую поднимется тело за время t
t — время

Скорость тела на некоторой высоте:

Максимальная высота подъёма тела:

Время подъёма на максимальную высоту:

Сложение движений, направленных под углом друг к другу.

Тело может одновременно участвовать в нескольких поступательных движениях. Поскольку ускорение, скорость и перемещение являются векторными величинами, их можно складывать по законам векторного (геометрического) сложения. Т.е. по правилу параллелограмма.

Величину результирующей любой характеристики движения можно вычислить.

Если:
Up — результирующая мгновенная скорость,
U1 — мгновенная скорость первого движения,
U2 — мгновенная скорость второго движения,
? — угол, образуемый векторами скоростей u1 и u2,
То по теореме косинусов получим:

Если движения 1 и 2 происходят под прямым углом друг к другу, то формула упрощается поскольку

Движение тела, брошенного горизонтально.

Движение тела, брошенного горизонтально, представляет собой комбинацию двух движений, взаимно перпендикулярных друг другу:
— горизонтального (равномерного) движения,
— вертикального (свободного падения)

Уравнение траектории тела, брошенного горизонтальн

Если построить траекторию движения тела, брошенного горизонтально, в системе координат xy, приняв за начало отсчета координат точку бросания, а направление оси ординат совпадающим с направлением вектора ускорения свободного падения, то координаты каждой точки траектории представляют собой перемещение тела в горизонтальном направлении (движение с постоянной скоростью U0) и в вертикальном направлении (равномерно ускоренное движение с ускорением g)

x, y — координаты тела,
u0 — начальная скорость тела (м/с),
g — ускорение свободного падения 9.81 (м/c2),
t — время движения (c)

Уравнение траектории тела, брошенного горизонтальновыглядит следующим образом:

Так как ускорение свободного падения g и начальная скорость тела u0 — постоянные величины, то координата yпропорциональна квадрату x, т.е. траектория движения представляет собой параболу, вершина которой находится в начальной точке движения.

Читайте также:  Как зарабатывать на банковских вкладах

Вектор положения тела брошенного горизонтально, формула

Положение каждой точки траектории тела брошенного горизонтально можно задать вектором положения r, который представляет собой результирующее перемещение:

или Вектор положения:

Координата по оси x:

Координата по оси y:

Примечание: Сопротивление воздуха в формулах не учитывается.

Уравнение движения тела, брошенного под углом к горизонту.

Координаты точки траектории описываются уравнениями:

x, y — координаты тела
U0 — начальная скорость тела (м/с)
? — угол, под которым брошено тело к горизонту (°)
g — ускорение свободного падения 9.81 (м/c2)
t — время движения (c)

Из формул через параметр t выводится общее уравнение движения тела, брошенного под углом к горизонту

Так как ускорение свободного падения g, ? — угол, под которым брошено тело к горизонту и начальная скорость тела u0 —постоянные величины, то координата y пропорциональна квадрату x, т.е. траектория движения представляет собой параболу, начальная точка находится на одной из ее ветвей, а вершина параболы, есть точка максимального подъема тела.

Время подъема на максимальную высоту, тела, брошенного под углом к горизонту.

Время подъема на максимальную высоту определяется из условия, что вертикальная составляющая мгновенной скорости равна нулю

из этого уравнения получаем:

U0 — начальная скорость тела (м/с),
? — угол, под которым брошено тело к горизонту (°),
g — ускорение свободного падения 9.81 (м/c2),
thmax — время подъема на максимальную высоту (c)

Дальность броска тела, брошенного под углом к горизонту.

Дальность броска или радиус поражения определяется по формулам общего времени движения и формулы координат тела

подставив tsmax в выражение и упростив получим:

U0 — начальная скорость тела (м/с),
? — угол, под которым брошено тело к горизонту (°),
g — ускорение свободного падения 9.81 (м/c2),
tsmax — общее время движения(c)

Постановка задачи. Начальные условия

Рассмотрим движение тела, которое бросили с начальной скоростью $<overline>_0 $параллельно Земле (горизонтально) рис.1. с некоторой высоты $h_0.$

Систему отсчета свяжем с Землей. Ось X направим параллельно Земле, ось Y перпендикулярно оси X, вверх. Тело движется под воздействием силы тяжести, если не учитывать силу трения, то другие силы на тело не действуют. Движение тела происходит в плоскости, в которой лежат векторы: начальной скорости тела $<overline>_0$ и ускорения $overline. $

Начальные условия при рассматриваемом нами движении точки:

Вектор ускорения при движении под действием силы тяжести считают постоянным:

Читайте также:  Комиссия regular charge что это

так как extit< >$overline$ направлен вертикально вниз, то:

где $gapprox $ 9,8 $frac<м><с^2>.$

Кинематические уравнения движения тела брошенного горизонтально

Кинематическое уравнение для скорости равнопеременного движения в поле тяжести имеет вид:

где $<overline>_0$ — начальная скорость тела. Движение материальной точки в рассматриваемом случае можно представить сумму двух независимых движений по прямым линиям, в которых участвует тело, брошенное горизонтально. Это равномерное движение с неизменной скоростью $<overline>_0$ в горизонтальном направлении и равноускоренное движение с ускорением $overline$ без начальной скорости в направлении вектора ускорения свободного падения.

В проекциях на оси координат получаем:

Модуль скорости движения точки при этом равен:

Уравнение для перемещения тела, брошенного горизонтально, запишем как:

где $<overline>_0$ — смещение тела в начальный момент времени. В нашем случае $s_0=y_0=h_0$. Векторное уравнение (7) даст два скалярных выражения для координат падающей точки:

Ка уже говорилось, каждое из двух отдельных движений тела происходит по прямой, но траекторией движения падающего тела является ветвь параболы, находящаяся в плоскости в которой лежат $<overline>_0$ и $overline$.

Из системы уравнений (8) легко получить уравнение траектории движения точки, исключая из уравнений время:

Высшей точкой траектории движения тела в нашем случае является точка бросания.

Время полета тела брошенного горизонтально, дальность полета

Время полета тела просто найти из второго уравнения системы (8), если положить, что в момент падения координата точки $y=0$:

Дальность полета (s) — это расстояние, которое тело преодолело по горизонтали (по оси X). Его найдем, подставив время полета в первое уравнение системы (8):

Примеры задач с решением

Задание. Маленький шарик бросили горизонтально со скоростью $v_0$. Какова высота, с которой бросили шарик, если он упал на землю, пролетев расстояние s по горизонтали в n раз большее, чем высота бросания?

Решение. Для решения задачи воспользуемся формулой, которую получили в теоретической части статьи, связывающую дальность полета тела и высоту, с которой это тело бросили горизонтально:

Воспользуемся условием, которое задано:

Выразим из формулы (1.1) искомую высоту, приняв во внимание (1.2), имеем:

Задание. Напишите уравнения траектории движения материальной точки М для случая, который изображен на рис. 3.

Решение. Основой решения задачи служит кинематическое уравнение для перемещения при равноускоренном движении:

Спроектируем выражение (2.1) на оси X и Y:

Для того чтобы получить уравнение траектории выразим время из первого уравнения системы (2.2):

Подставим найденное время (2.3) во второе уравнение системы (2.3):

Цель работы: изучение движения тела, брошенного под углом к горизонту; определение времени, дальности и высоты полета.

Читайте также:  Лучше скоро да вперед

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила – сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения ; проекции ускорения на координатные оси равны ах = 0, ау = -g.

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где – начальная скорость, α – угол бросания.

Координаты тела, следовательно, изменяются так:

При нашем выборе начала координат начальные координаты (рис. 1) Тогда

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

. (2)

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета – это значение координаты х в конце полета, т.е. в момент времени, равный t. Подставляя значение (2) в первую формулу (1), получаем:

. (3)

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

. (4)

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания α и его функции – здесь просто константы, т.е. постоянные числа.

Ссылка на основную публикацию
Умные часы для детей xiaomi mi bunny
Детские смарт-часы Xiaomi, изготовленные из прочного пластика различных оттенков, предназначены для отображения текущего времени и дополнительной информации (например, о пройденной...
Телефон с камерой лучше чем у айфона
В России начинаются продажи смартфонов iPhone XS и iPhone XS Max. Цены в этот раз просто заоблачные — средняя (256...
Телефон с горизонтальной камерой
Сегодня мало кого можно удивить телефоном с двумя основными камерами. А вот сдвоенную фронтальную камеру встретишь далеко не в каждом...
Улучшить качество связи мтс
Усилитель сигнала МТС– специальный прибор, который необходим для того, чтобы предоставлять более сильный сигнал сотовой связи. Невозможно звонить или отправлять...
Adblock detector