Как можно описать топологию расширенная звезда cisco

Как можно описать топологию расширенная звезда cisco

Топология кольцо (топология замкнутой сети) — это тип сетевой топологии, при котором все компьютеры подключены коммуникационному каналу, замкнутому на себе. В кольце сигналы передаются только в одном направлении. Сигнал в топологии кольцо возможно усиливать.

Преимущества и недостатки

· Отсутствие возможности для столкновения передающейся информации.

· Возможность одновременной передачи данных сразу несколькими компьютерами.

· Возможность промежуточного сигнала.

· Высокая стоимость и сложность обслуживания.

· В случае выхода из строя кабеля или компа сеть прекращает функционировать.

· Кольцо в 2.5 раза медленнее шины.

Топология «звезда»

В сетях, использующих топологию "звезда", сетевой носитель соединяет центральный концентратор с каждым устройством, подключенным к сети. Физический вид топологии "звезда" напоминает радиальные спицы, исходящие из центра колеса. В этой топологии используется управление из центральной точки, а связь между устройствами, подключенными к сети, осуществляется посредством двухточечных линий между каждым устройством и центральным каналом или концентратором. Весь сетевой трафик в звездообразной топологии проходит через концентратор. Вначале данные посылаются концентратору, а затем концентратор переправляет их устройству в соответствии с адресом, содержащимся в данных. В сетях с топологией "звезда" концентратор может быть активным или пассивным. Активный концентратор не только соединяет участки среды передачи, но и регенерирует сигнал, т.е. работает как многопортовый повторитель. Благодаря выполнению регенерации сигналов, активный концентратор позволяет данным перемещаться на более значительные расстояния. В отличие от активного концентратора, пассивный концентратор только соединяет участки сетевой среды передачи данных.

Преимущества и недостатки топологии «звезда». Большинство проектировщиков сетей считают топологию "звезда" самой простой с точки зрения проектирования и установки. Это объясняется тем, что сетевая среда выходит непосредственно из концентратора и прокладывается к месту установки рабочей станции. Другим достоинством этой топологии является простота обслуживания: единственной областью концентрации является центр сети. Также топология "звезда" позволяет легко диагностировать проблемы и изменять схему прокладки. Кроме того, к сети, использующей топологию "звезда", легко добавлять рабочие станции. Если один из участков сетевой среды передачи данных обрывается или закорачивается, то теряет связь только устройство, подключенное к этой точке. Остальная часть сети будет функционировать нормально. Короче говоря, топология "звезда" считается наиболее надежной. В некотором смысле достоинства топологии "звезда" могут считаться и ее недостатками. Например, наличие отдельного отрезка кабеля для каждого устройства позволяет легко диагностировать отказы, однако, это же приводит и к увеличению количества отрезков. В результате повышается стоимость установки сети с топологией "звезда". Другой пример: концентратор может упростить обслуживание, поскольку все данные проходят через эту центральную точку; однако, если концентратор выходит из строя, то перестает работать вся сеть.

Область покрытия сети с топологией «звезда». Максимально допустимая длина отрезков сетевого кабеля между концентратором и любой рабочей станцией (их еще называют горизонтальной кабельной системой) составляет 100 метров. Величина максимальной протяженности горизонтальной кабельной системы устанавливается Ассоциацией электронной промышленности (Electronic Industries Association, EIA) и Ассоциацией телекоммуникационной промышленности (Telecommunications Industry Association, TIA). Эти две организации совместно создают стандарты, которые часто называют стандартами EIA/TIA. В частности, для технического выполнения горизонтальной кабельной системы был и остается наиболее широко используемым стандарт EIA/T1A-568B. В топологии "звезда" каждый отрезок горизонтальной кабельной системы выходит из концентратора, во многом напоминая спицу колеса. Следовательно, локальная сеть, использующая этот тип топологии, может покрывать область 200×200 метров. Понятно, бывают случаи, когда область, которая должна быть покрыта сетью, превышает размеры, допускаемые простой топологией "звезда". Представим себе здание размером 250×250 метров. Сеть с простой звездообразной топологией, отвечающая требованиям к горизонтальной кабельной системе, устанавливаемым стандартом EIA/TIA-568B, не может полностью покрыть здание с такими размерами. Рабочие станции находятся за пределами области, которая может быть накрыта простой звездообразной топологией, и, как и изображено, они не являются частью этой сети. Когда сигнал покидает передающую станцию, он чистый и легко различимый. Однако по мере движения в среде передачи данных сигнал ухудшается и ослабевает — чем длиннее кабель, тем хуже сигнал; это явление называется аттенюацией. Поэтому, если сигнал проходит расстояние, которое превышает максимально допустимое, нет гарантии, что сетевой адаптер сможет этот сигнал прочитать.

компьютерный сеть топология локальный

Топология "расширенная звезда"

Если простая звездообразная топология не может покрыть предполагаемую область сети, то ее можно расширить путем использования межсетевых устройств, которые не дают проявляться эффекту аттенюации; результирующая топология называется топологией "расширенная звезда". Еще раз представим себе здание размером 250×250 метров. Для того чтобы звездообразная топология могла эффективно использоваться в этом здании, ее необходимо расширить. За счет увеличения длины кабелей горизонтальной кабельной системы это делать нельзя, поскольку нельзя превышать рекомендуемую максимальную длину кабеля. Вместо этого можно использовать сетевые устройства, которые препятствуют деградации сигнала. Чтобы сигналы могли распознаваться принимающими устройствами, используются повторители, которые берут ослабленный сигнал, очищают его, усиливают и отправляют дальше по сети. С помощью повторителей можно увеличить расстояние, на которое может простираться сеть. Повторители работают в тандеме с сетевыми носителями и, следовательно, относятся к физическому уровню эталонной модели OSI.

Топология типа «Звезда» (star topology) использует специальное коммутирующее устройство — концентратор (Hub). Каждый компьютер подключается к концентратору при помощи отдельного кабеля. В звездообразной топологии используется кабель на основе витой пары, подобный тем, которые описаны в спецификациях 10BaseT и 100BaseT. О стандартах Ethernet Большинство локальных сетей, использующих протокол Ethernet, а также многие компьютерные сети, использующие другие протоколы, строятся на основе звездообразной топологии.
Хотя каждый ПК не связан непосредственно с остальными компьютерами и подключен только к концентратору посредством отдельного кабеля, все сигналы, поступающие на любой из портов концентратора, передает на все остальные порты. Таким образом, все сигналы, передаваемые ПК в сеть, достигают всех остальных компьютеров.
Благодаря тому, что каждый ПК имеет выделенное соединение с концентратором, топология типа «Звезда» обеспечивает более надежную работу сети, чем шинная, т. к. повреждение какого-либо кабеля затрагивает работу только одного компьютера, использующего этот кабель, и не влияет на работу остальной части сети. Недостатком звезды является то, что для нее требуется дополнительное устройство — концентратор. Выход из строя концентратора затрагивает всю сеть, — она вся целиком перестает работать.

Читайте также:  Как оплатить голоса в вк через телефон

Теория трёхуровневой модели

Рассмотрим следующую схему трёхуровневой иерархической модели, которая используется во многих решениях построения сетей:

Распределение объектов сети по уровням происходит согласно функционалу, который выполняет каждый объект, это помогает анализировать каждый уровень независимо от других, т.е. распределение идёт в основном не по физическим понятиям, а по логическим.

Базовый уровень (Core)

На уровне ядра необходима скоростная и отказоустойчивая пересылка большого объема трафика без появления задержек. Тут необходимо учитывать, что ACL и неоптимальная маршрутизация между сетями может замедлить трафик.
Обычно при появлении проблем с производительностью уровня ядра приходиться не расширять, а модернизировать оборудование, и иногда целиком менять на более производительное. Поэтому лучше сразу использовать максимально лучшее оборудование не забывая о наличии высокоскоростных интерфейсов с запасом на будущее. Если применяется несколько узлов, то рекомендуется объединять их в кольцо для обеспечения резерва.
На этом уровне применяют маршрутизаторы с принципом настройки — VLAN (один или несколько) на один узел уровня Distribution.

Уровень распространения (Distribution)

Тут происходит маршрутизация пользовательского трафика между сетями VLAN’ов и его фильтрация на основе ACL. На этом уровне описывается политика сети для конечных пользователей, формируются домены broadcast и multicast рассылок. Также на этом уровне иногда используются статические маршруты для изменения в маршрутизации на основе динамических протоколов. Часто применяют оборудование с большой ёмкостью портов SFP. Большое количество портов обеспечит возможность подключения множества узлов уровня доступа, а интерфейс SFP предоставит выбор в использовании электрических или оптических связей на нижестоящий уровень. Также рекомендуется объедение нескольких узлов в кольцо.
Часто применяются коммутаторы с функциями маршрутизации (L2/3) и с принципом настройки: VLAN каждого сервиса на один узел уровня Access.

Уровень доступа (Access)

К уровню доступа непосредственно физически присоединяются сами пользователи.
Часто на этом уровне трафик с пользовательских портов маркируется нужными метками DSCP.
Тут применяются коммутаторы L2 (иногда L2/3+) с принципом настройки: VLAN услуги на порт пользователя + управляющий VLAN на устройство доступа.

Практическое применение сетевых технологий в трёхуровневой модели

При рассмотрении следующих технологий используется оборудование уровня ядра и распределения Cisco Catalyst, а для уровня доступа — D-Link DES. На практике такое разделение брендов часто встречается из-за разницы в цене, т.к. на уровень доступа в основном необходимо ставить большое количество коммутаторов, наращивая ёмкость портов, и не все могут себе позволить, чтобы эти коммутаторы были Cisco.

Соберём следующую схему:

Схема упрощена для понимания практики: каждое ядро включает в себя только по одному узлу уровня распределения, и на каждый такой узел приходится по одному узлу уровня доступа.

На практике при больших масштабах сети смысл подобной структуры в том, что трафик пользователей с множества коммутаторов уровня доступа агрегируется на родительском узле распределения, маршрутизируется или коммутируется по необходимости на вышестоящее ядро, на соседний узел распределения или непосредственно между самими пользователями с разных узлов доступа. А каждое ядро маршрутизирует или коммутирует трафик между несколькими узлами распределения, которые непосредственно включены в него, или между соседними ядрами.

VLAN — Virtual Local Area Network

VLAN — это логическое разделение сети на независимые группы хостов.
Благодаря использованию VLAN можно осуществить следующие вещи:

  • разделить одно физическое устройство (коммутатор) на несколько логических по уровню L2
  • если назначить подсети различным VLAN’ам, то хосты подключенные в одно и тоже устройство (содержащее несколько VLAN’ов) будут иметь различные подсети, также можно хосты с разных устройств объединять в одни подсети
  • сегментация трафика VLAN’ами приводит к образованию независимых широковещательных доменов, тем самым уменьшая количество широковещательного трафика на сети в целом
  • разделение трафика на VLAN’ы также обеспечивает безопасность между разными сетями

Распределим VLAN’ы по схеме:

Начнём с уровня доступа.
На коммутаторе DES_1 (D-Link) создадим VLAN 100 для управления:
create vlan 100 tag 100

Добавим его тегированным на 25 порт:
config vlan 100 add tagged 25

Лучше запретить управляющий VLAN на портах (1-24), к которым подключаются пользователи:
config vlan 100 add forbidden 1-24

Дефолтный VLAN устройства удалим:
config vlan default delete 1-26

Поставим IP адрес коммутатора в управляющий VLAN:
config ipif System vlan 100 ipaddress 172.16.0.2/24 state enable

Пропишем шлюз, которым будет являться логический интерфейс устройства на вышестоящем уровне распределения:
create iproute default 172.16.0.1 1

Создадим VLAN 500, в котором предоставляется сервис DHCP (сам DHCP сервер будет находиться на уровне распределения) и сделаем его нетегированным на пользовательских портах (1-24) и тегированным на аплинке (25):
create vlan 500 tag 500
config vlan 500 add untagged 1-23
config vlan 500 add tagged 25

Читайте также:  Произошла ошибка файлового потока в модуле is7zipextract

На DES_2 все те же настройки, кроме IP адреса (172.16.1.2) и шлюза (172.16.1.1).

Теперь перейдём к уровню распределения.
Настраиваем Cat_1.
Если мы используем коммутатор Catalyst, то VLAN’ы создаются в режиме конфигурации ( conf t ) следующим образом:
Vlan

Предварительно лучше VTP переключить в прозрачный режим:
vtp mode transparent

Необходимо создать три VLAN’а: управление узлами доступа – VLAN 100, для связи между Cat_1 и Core_1 — VLAN 20 и у нас один узел доступа на каждый уровень распределения, поэтому для сервиса DHCP создаётся один VLAN – 500, на реальной сети нужно на каждый коммутатор доступа по своему VLAN’у с DHCP:
Vlan 100,20,500

Добавим VLAN 20 на интерфейс (gi 0/1), к которому подключено ядро.
Входим в режим конфигурации:
Cat_1#conf t

Конфигурация интерфейса gi 0/1:
Cat_1(config)#int gigabitEthernet 0/1

Указываем использование стандарта 802.1Q:
Cat_1(config-if)#switchport trunk encapsulation dot1q

Переводим порт в режим транка:
Cat_1(config-if)#switchport mode trunk

Добавляем VLAN:
Cat_1(config-if)#switchport trunk allowed vlan 20

Если на порту уже есть какие-то VLAN’ы, то необходимо использовать команду: switchport trunk allowed vlan add , т.к. если не указать add , то уже существующие VLAN’ы пропадут.
Теми же командами добавляем VLAN’ы 100, 500 на gi 0/2 к которому подключен DES_1.

Для конфигурации сразу нескольких интерфейсов одновременно можно делать так:
Cat_1(config)#int range gigabitEthernet 0/2-3

Укажем сеть для управления уровнем доступа:
Cat_1(config)#int Vlan100
Cat_1(config-if)#ip address 172.16.0.1 255.255.255.0

Укажем IP для Cat_1:
Cat_1(config)#int Vlan20
Cat_1(config-if)#ip address 10.10.0.2 255.255.255.248

Cat_2 настраиваем так же, только меняем адреса в VLAN’ах 100 и 20. VLAN 100 – 172.16.1.1 255.255.255.0, VLAN 20 – 10.20.0.2 255.255.255.248
На Core_1 создаём VLAN’ы 10 и 20, добавляем 10 на gi 0/1, куда подключен Core_2 и 20 на интерфейс gi 0/2, к которому подключен узел уровня распределения, ставим IP адреса: VLAN 10 – 10.0.0.1 255.255.255.248, VLAN 20 – 10.10.0.1 255.255.255.248.
На Core_2 создаём также VLAN’ы 10 и 20, добавляем 10 на gi 0/1, куда подключен Core_1 и 20 на интерфейс gi 0/2, к которому подключен Cat_2, ставим IP адреса: VLAN 10 – 10.0.0.2 255.255.255.248, VLAN 20 – 10.20.0.1 255.255.255.248.

DHCP — Dynamic Host Configuration Protocol

DHCP – это клиент-серверный протокол для автоматической настройки IP адреса и других параметров у хоста сети.
В роли DHCP сервера будет выступать уровень распределения. В клиентском VLAN’е 500 создадим DHCP пул с сетью 192.168.0.0 255.255.255.224 для Cat_1 и 192.168.1.0 255.255.255.224 для Cat_2.
Настраиваем Cat_1.
Указываем DHCP пул:
Cat_1(config)#ip dhcp pool Vlan500

Указываем сеть, из которой будут выдаваться адреса:
Cat_1(dhcp-config)#network 192.168.0.0 255.255.255.224

Указываем шлюз по умолчанию, который получит клиент DHCP:
Cat_1(dhcp-config)#default-router 192.168.0.1

Присваиваем клиенту dns сервера:
Cat_1(dhcp-config)#dns-server

Задаём время аренды в днях:
Cat_1(dhcp-config)#lease 14

Можно указать имя домена:
Cat_1(dhcp-config)#domain-name workgroup_1

После этого выходим из режима конфигурации DHCP и исключаем ip адрес шлюза по умолчанию из DHCP пула:
Cat_1(dhcp-config)#ex
Cat_1(config)#ip dhcp excluded-address 192.168.0.1

Создаём логический интерфейс, который будет шлюзом по умолчанию для пользователей.
Создаём сам интерфейс:
Cat_1(config)#int Vlan500

Ставим IP адрес:
Cat_1(config-if)# ip address 192.168.0.1 255.255.255.224

Для Cat_2 делаем по аналогии, используя в VLAN’е 500 сеть 192.168.1.0 255.255.255.224
После этого пользователи DES_1 и DES_2 будут получать адреса по DHCP.

OSPF — Open Shortest Path First

OSPF — удобный протокол динамической маршрутизации с учётом состояния каналов. Он позволяет составить полную схему сети, а затем выбрать на основе этого оптимальный маршрут. Функционирование основано на получении данных о состоянии сетевых связей или каналов. Подробное описание есть в википедии. Мы будем использовать именно этот протокол.

В реальной сети каждое ядро содержит area 0 (для связи с другими ядрами) и несколько других зон, в которые входят узлы уровня распределения. Эти узлы в пределах одной зоны удобно объединять в кольца, благодаря чему будет резерв и оптимальная маршрутизация. Например, это может выглядеть так:

Определим зоны в нашей сети:

Настройка Core_1.
Включим маршрутизацию:
Core_1(config)# ip routing
Core_1(config)# ip classless
Core_1(config)# ip subnet-zero

Включим процесс OSPF и укажем proccess-id (берётся произвольно, в нашем случае — 111):
Core_1(config)#router ospf 111

Укажем сети для каждой из зон, в которые входит Core_1 (надо использовать инверсию маски):
Core_1 (config-router)# network 10.0.0.0 0.0.0.7 area 0
Core_1 (config-router)# network 10.10.0.0 0.0.0.7 area 10

Обычно прописывают ещё вручную Router-id (идентификатор маршрутизатора), указывая при этом IP адрес этого маршрутизатора. Если этого не делать, то Router-id будет выбран автоматически.

На Core_2 делаем всё точно также как и на Core_1.

При настройке Cat_1 включаем также маршрутизацию и процесс ospf с id 111. Указываем сеть 10.10.0.0 255.255.255.248 в area 10:
Cat_1(config)# ip routing
Cat_1(config)# ip classless
Cat_1(config)# ip subnet-zero
Cat_1(config)#router ospf 111
Cat_1(config-router)# network 10.10.0.0 0.0.0.7 area 10

Необходимо указать редистрибьюцию сети для DHCP (она в int Vlan500) в этот процесс ospf. Делается это командой:
Cat_1(config-router)# redistribute connected metric 5 metric-type 1 subnets

5 — это метрика для перераспределённого маршрута
1 – это тип внешней метрики – OSPF

После этой команды все сети в VLAN’ах Cat_1 будут доступны через ospf.
Редистрибьюцию пользовательских сетей DHCP также можно сделать через route-map и access-list или целиком указать в network x.x.x.x x.x.x.x area x. Всё это зависит от того, как и что нужно анонсировать в маршрутизации по сети.
Cat_2 настраиваем аналогично, только в area 10 надо указать network 10.20.0.0 0.0.0.7

Читайте также:  Чем клеить войлок к войлоку

По сути, теперь мы имеем работающую сеть, в которой пользователи с разных коммутаторов уровня доступа смогут обмениваться трафиком.

STP — Spanning Tree Protocol

STP – протокол связующего дерева, предназначен для избавления от ненужных циклов трафика и используется для построения резервов по L2.
Протокол работает следующим образом:

  • на сети выбирается root bridge
  • все не root узлы вычисляют оптимальный путь к root bridge, и порт (через который проходит этот путь) становится root port
  • если путь к root bridge проходит через какой то узел, то такой узел сети становиться designated bridge и порт соответственно designated port
  • порты, участвующие в дереве stp и не являющиеся root или designated блокируются

Сделаем кольцо следующего вида:

Cat_3 и Cat_2 находятся в одной area, работая по VLAN’у 20 и соединены непосредственно друг с другом для резерва по L2.
На Core_2, Cat_2 и Cat_3 включаем rapid-pvst. Rapid-Per-VLAN-Spanning Tree позволяет строить дерево на каждый VLAN отдельно.
Cat_1(config)#spanning-tree mode rapid-pvst

Указываем, что все существующие VLAN’ы должны участвовать в STP с приоритетом этого узла. Чтобы Core_2 был root bridge, ему надо поставить priority меньшее чем у Cat_3 и Cat_2, у которых в свою очередь priority может быть одинаковым.
Core_2:
Core_2(config)#spanning-tree vlan 1-4094 priority 4096

Cat_3:
Cat_3(config)#spanning-tree vlan 1-4094 priority 8192

Cat_2:
Cat_2(config)#spanning-tree vlan 1-4094 priority 8192

После этого Core_2 станет root bridge, а один из портов Cat_3 или Cat_2 заблокируется для передачи трафика по VLAN’у 20 в сторону Core_2. Если необходимо указать, чтобы определённый VLAN не участвовал в STP, то делается это такой командой:
no spanning-tree vlan

Следует заметить, что BPDU пакеты Cisco и D-Link, при помощи которых строится STP, не совместимы между собой, поэтому stp между оборудованием этих двух производителей скорее всего построить будет очень затруднительно.

SNMP — Simple Network Management Protocol

SNMP – протокол простого управления сетью. При помощи него как правило собирается статистика работы оборудования, и он часто используется при автоматизации выполнения каких-либо операций на этом оборудовании.
На узлах всех уровней определим community, которое определяет доступ к узлу на read или write по этому протоколу, при условии, что это community совпадает у источника и получателя.

На Cisco:
Read — snmp-server community RO
Write — snmp-server community RW
Название snmp_community чувствительно к регистру.

На всех узлах ядра и распределения выполняем эти команды:
Core_1(config)# snmp-server community CISCO_READ RO
Core_1(config)# snmp-server community CISCO_WRITE RW

На D-link:
Удаляем всё дефолтное:
delete snmp community public
delete snmp community private
delete snmp user initial
delete snmp group initial
delete snmp view restricted all
delete snmp view CommunityView all

Создаём community на read — DLINK_READ и на write — DLINK_WRITE:
create snmp view CommunityView 1 view_type included
create snmp group DLINK_READ v1 read_view CommunityView notify_view CommunityView
create snmp group DLINK_READ v2c read_view CommunityView notify_view CommunityView
create snmp group DLINK_WRITE v1 read_view CommunityView write_view CommunityView notify_view CommunityView
create snmp group DLINK_WRITE v2c read_view CommunityView write_view CommunityView notify_view CommunityView
create snmp community DLINK_READ view CommunityView read_only
create snmp community DLINK_WRITE view CommunityView read_write

ACL — Access Control List

Списки контроля доступа – это условия, которые проходят проверку при выполнении каких-либо операций.
ACL используется в связке со многими протоколами и сетевыми механизмами, фильтруя трафик на интерфейсах и протоколах NTP, OSPF и других.

Создадим правило для закрытия доступа из пользовательской сети Cat_1 (192.168.0.0 255.255.255.224) в сеть Cat_2, которая находится в VLAN’е 500:
Cat_2(config)#ip access-list extended Access_denided_IN
Cat_2(config)#deny ip 192.168.0.0 0.0.0.31 any
Cat_2(config)#deny udp 192.168.0.0 0.0.0.31 any

Как видите, в extended access листах используется инверсия маски.
После создания списка доступа его необходимо применить на нужном интерфейсе:
Cat_2(config)#int Vlan500
Cat_2(config-if)# ip access-group Access_denided_IN in

Тем самым запретив на int vlan500 Cat_2 входящий трафик ip и udp от 192.168.0.0 255.255.255.224 на любой адрес.

NTP — Network Time Protocol

Cisco:
Синхронизация внутреннего времени узла с внешним сервером (можно использовать несколько серверов):
ntp server

Указание часового пояса (GMT +3):
clock timezone MSK 3

Начальная и конечная дата перехода на летнее время:
clock summer-time MSK recurring last Sun Mar 2:00 last Sun Oct 3:00

Эти команды следует выполнить на всех узлах сети, либо указать на роутере ядра ntp master и остальные узлы синхронизировать с ним.

Также можно указать время вручную:
clock set 18:00:00 20 Feb 2011
Но это делать крайне не рекомендуется — лучше использовать NTP.

D-Link:
Используем SNTP – более простая версия NTP.

Включаем SNTP:
enable sntp

Указание часового пояса (GMT +3):
config time_zone operator + hour 3 min 0

Задаём NTP сервера:
config sntp primary secondary poll-interval 600

poll-interval — интервал времени в секундах между запросами на обновление SNTP информации.

Начальная и конечная дата перехода на летнее время:

config dst repeating s_week 1 s_day sun s_mth 4 s_time 0:3 e_week last e_day sun e_mth 10 e_time 0:3 offset 60

Мы рассмотрели теорию трёхуровневой модели сети и некоторые базовые технологии, которые помогут в изучении таких сетей.

Ссылка на основную публикацию
Как искать по картинке в опере
Поиск по изображению картинок в Google Image Vladekas Blog - Интернет для Чайников Этот пост можно условно разделить на две...
Как добавить фигуру в смарт арт
Здравствуйте, уважаемые читатели. Сегодня расскажу Вам об инструменте рисования схем в Ворде — SmartArt. Ели Вы описываете в тексте какие-то...
Как зайти в корень диска с
Друзья, всем привет! Сегодня я расскажу вам что такое корневая папка и как её найти. Наверняка, у многих из вас...
Как исправить оценку в сетевом городе навсегда
Подраздел «Все оценки» предоставляет администратору образовательной организации (далее — ОО) возможности просмотра, удаления и восстановления оценок учащихся ОО. Переход в...
Adblock detector