Японская техника умножения чисел

Японская техника умножения чисел

С тем, что математика — это далеко непростая наука, согласится большинство. Традиционным способам производить различные математические вычисления нас обучают еще в школе, но в мире есть и другие методы, позволяющие получить решение той или иной арифметической задачи. Знали ли вы, что для умножения многозначных чисел необязательно пользоваться калькулятором или умножать столбиком. Когда сосчитать большие цифры в голове никак не получается (вундеркинды в счет здесь не берутся), можно обойтись простым графическим методом умножения.

Речь пойдет об одном из таких способов, который основывается на черчении пересекающихся линий, нечто вроде игры в «крестики-нолики». Этот математический трюк известен как японский метод простого умножения многозначных чисел или способ индейцев Майя. Если не верите в достоверности оригинального графического способа, убедитесь сами.

Двойное название графического метода имеет место потому, что согласно одной из версий, такой метод умножения был придуман индейцами древней цивилизации Майя, которые жили в районах Центральной Америки еще в XVI столетии. А японским он называется потому, что этим визуальным методом пользуются японские школьники младших классов.

Суть японского метода умножения заключается в том, что параллельные и перпендикулярные прямые представляют цифры многозначных чисел уравнения. Весь смысл такого умножения заключается в том, что каждую цифру в записи множителей мы представляем графически, т.е. прямыми линиями, количество которых соответствует определенной цифре. Отметим, что линии одного множителя должны пересекать линии другого множителя, а сумма пересечений и есть их произведение.

В школе мы годами зубрим секреты математики, но проходит несколько лет, и большая часть знаний выветривается из головы. Да и зачем они нам, если калькулятор всегда под рукой. Но знаете ли вы, что умножать многозначные числа за пару секунду может каждый? Да-да! Для этого достаточно знать потрясающий древний секрет умножения. Итак, смотрим, как умножать по-японски.

1.) Умножаем двузначные числа

Рисуем на листе бумаги небольшие параллельные линии по каждой из цифр первого числа — слева направо, второго числа — снизу вверх. Линии должны пересекаться, образуя решетку.

Теперь разделим получившуюся решетку следующим образом: места пересечений, которые находятся на одной диагонали группируем вместе.

А теперь подсчитываем точки пересечения линий в каждой группе — именно из получившихся цифр (слева направо) и будет состоять число, которое мы хотим получить.

2.) Умножаем трехзначные числа

Умножая трехзначные числа по тому же принципу, мы получаем гораздо больше точек пересечения. Поэтому если количество точек на диагонали становится двузначным числом, оставляем вторую цифру, а первую цифру суммируем с предыдущим числом (слева).

3.) Умножаем на ноль

Если в числе присутствует ноль, рисуем одну линию (лучше другим цветом). И все точки пересечения с этой линией мы просто пропускаем и не включаем в счет.

Читайте также:  Ципралекс или селектра что лучше

Похоже на магию, правда? Что удобнее — обычное умножение в столбик или вот такой секретный японский трюк. Вы как думаете? Поделитесь в комментариях.

Презентация к уроку

Загрузить презентацию (410,9 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

“Счёт и вычисления – основа порядка в голове”.
Песталоцци

Цель:

  • Познакомиться со старинными приемами умножения.
  • Расширить знания по различным приемам умножения.
  • Научиться выполнять действия с натуральными числами, используя старинные способы умножения .

Содержание.

  1. Старинный способ умножение на 9 на пальцах
  2. Умножение методом Ферроля.
  3. Японский способ умножения.
  4. Итальянский способ умножения (“Сеткой”)
  5. Русский способ умножения.
  6. Индийский способ умножения.

Ход занятия

Актуальность использования приемов быстрого счета.

В современной жизни каждому человеку часто приходится выполнять огромное количество расчётов и вычислений. Поэтому цель моей работы – показать лёгкие, быстрые и точные методы счёта, которые не только помогут вам во время каких-либо расчётах, но вызовут немалое удивление у знакомых и товарищей, ведь свободное выполнение счётных операций в значительной степени может свидетельствовать о незаурядности вашего интеллекта. Основополагающим элементом вычислительной культуры являются сознательные и прочные вычислительные навыки. Проблема формирования вычислительной культуры актуальна для всего школьного курса математики, начиная с начальных классов, и требует не простого овладения вычислительными навыками, а использования их в различных ситуациях. Владение вычислительными умениями и навыками имеет большое значение для усвоения изучаемого материала, позволяет воспитывать ценные трудовые качества: ответственное отношение к своей работе, умение обнаруживать и исправлять допущенные в работе ошибки, аккуратное исполнение задания, творческое отношение к труду. Однако, в последнее время уровень вычислительных навыков, преобразований выражений имеет ярко выраженную тенденцию к снижению, учащиеся допускают массу ошибок при подсчетах, все чаще используют калькулятор, не мыслят рационально, что отрицательно сказывается на качестве обучения и уровне математических знаний учащихся в целом. Одной из составляющих вычислительной культуры является устный счёт, который имеет большое значение. Умение быстро и правильно произвести несложные вычисления “в уме” необходимо для каждого человека.

Старинные способы умножения чисел.

1. Старинный способ умножение на 9 на пальцах

Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9 x 3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9 x 3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

2. Умножение методом Ферроля.

Для умножения единиц произведения переумножения перемножают единицы множителей, для получения десятков, умножают десятки одного на единицы другого и наоборот и результаты складывают, для получения сотен перемножают десятки. Методом Ферроля легко перемножать устно двухзначные числа от 10 до 20.

Читайте также:  Установка transmission на synology

б) 1х4+2х1=6, пишем 6

3. Японский способ умножения

Такой прием напоминает умножение столбиком, но проводится довольно долго.

Использование приема. Допустим, нам надо умножить 13 на 24. Начертим следующий рисунок:

Этот рисунок состоит из 10 линий (количество может быть любым)

  • Эти линии обозначают число 24 (2 линии, отступ, 4 линии)
  • А эти линии обозначают число 13 (1 линия, отступ, 3 линии)

Теперь нужно сосчитать пересечения линий на всех четырех концах следующим способом:

(пересечения на рисунке указаны точками)

Количество пересечений:

  • Верхний левый край: 2
  • Нижний левый край: 6
  • Верхний правый: 4
  • Нижний правый: 12

1) Пересечения в верхнем левом крае (2) – первое число ответа

2) Сумма пересечений нижнего левого и верхнего правого краев (6+4) – второе число ответа

3) Пересечения в нижнем правом крае (12) – третье число ответа.

Получается: 2; 10; 12.

Т.к. два последних числа – двузначные и мы не можем их записать, то записываем только единицы, а десятки прибавляем к предыдущему.

4. Итальянский способ умножения (“Сеткой”)

В Италии, а также во многих странах Востока, этот способ приобрел большую известность.

Например, умножим 6827 на 345.

1. Вычерчиваем квадратную сетку и пишем одно из чисел над колонками, а второе по высоте.

2. Умножаем число каждого ряда последовательно на числа каждой колонки.

т.е.

  • 6*3 = 18. Записываем 1 и 8
  • 8*3 = 24. Записываем 2 и 4

Если при умножении получается однозначное число, записываем вверху 0, а внизу это число.

(Как у нас в примере при умножении 2 на 3 получилось 6. Вверху мы записали 0, а внизу 6)

3. Заполняем всю сетку и складываем числа, следуя диагональным полосам. Начинаем складывать справа налево. Если сумма одной диагонали содержит десятки, то прибавляем их к единицам следующей диагонали.

5. Русский способ умножения.

Этот прием умножения использовался русскими крестьянами примерно 2-4 века назад, а разработан был еще в глубокой древности. Суть этого способа та:“На сколько мы делим первый множитель, на столько умножаем второй”.Вот пример: Нам нужно 32 умножить на 13. Вот как бы решили этот пример 3-4 века назад наши предки:

  • 32 * 13 (32 делим на 2, а 13 умножаем на 2)
  • 16 * 26 (16 делим на 2, а 26 умножаем на 2)
  • 8 * 52 (и т.д.)
  • 4 * 104
  • 2 * 208
  • 1 * 416 =416

Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение

Читайте также:  Электросхема посудомоечной машины bosch

Однако как поступить, если при этом приходится делить пополам число нечетное? Народный способ легко выходит из этого затруднения. Надо, — гласит правило, — в случае нечётного числа откинуть единицу и делить остаток пополам; но зато к последнему числу правого столбца нужно будет прибавить все те числа этого столбца, которые стоят против нечетных чисел левого столбца: сумма и будет искомым произведением. Практически это делают так, что все строки с четными левыми числами зачеркивают; остаются только те, которые содержат налево нечетное число. Приведем пример (звездочки указывают, что данную строку надо зачеркнуть):

  • 19*17
  • 9*34
  • 4 *68*
  • 2 *136*
  • 1 *272

Сложив незачеркнутые числа, получаем вполне правильный результат:

  • 17 + 34 + 272 = 323.

6. Индийский способ умножения.

Такой способ умножения использовали в Древней Индии.

Для умножения, например, 793 на 92 напишем одно число как множимое и под ним другое как множитель. Чтобы легче ориентироваться, можно использовать сетку (А) как образец.

Теперь умножаем левую цифру множителя на каждую цифру множимого, то есть, 9х7, 9х9 и 9х3. Полученные произведения пишем в сетку (Б), имея в виду следующие правила:

  • Правило 1. Единицы первого произведения следует писать в той же колонке, что и множитель, то есть в данном случае под 9.
  • Правило 2. Последующее произведения надо писать таким образом, чтобы единицы помещались в колонке непосредственно справа от предыдущего произведения.

Повторим весь процесс с другими цифрами множителя, следуя тем же правилам (С).

Затем складываем цифры в колонках и получаем ответ: 72956.

Как можно видеть, мы получаем большой список произведений. Индийцы, имевшие большую практику, писали каждую цифру не в соответствующую колонку, а сверху, насколько это было возможно. Затем они складывали цифры в колонках и получали результат.

Заключение

Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, “экономическую — ситуацию” в стране, погоду на “завтра”, описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в 4 веке д. н.э.- Пифагора — “Всё есть число!”.

Согласно философскому воззрению этого учёного и его последователей, числа управляют не только мерой и весом, но также всеми явлениями, происходящими в природе, и являются сущностью гармонии, царствующей в мире, душой космоса.

Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.

“Кто с детских лет занимается математикой, тот развивает внимание, тренирует мозг, свою волю, воспитывает настойчивость и упорство в достижении цели”. (А.Маркушевич)

Ссылка на основную публикацию
Экран на телефоне мерцает полосками
Доброго времени суток! Большое количество пользователей android устройств, сталкиваются с проблемой, мерцание экрана. Сегодня в этой теме мы опишем возможные...
Что такое django python
Django Тип каркас веб-приложений Автор РазработчикDjango Software FoundationНаписана наPython[2]Интерфейсвеб-интерфейсОперационная системакроссплатформенностьПервый выпуск2005[1]Последняя версия 3.0.4 ( 4 марта2020 ) [3] Лицензиямодифицированная лицензия...
Что такое hangouts и для чего
Хэкгаутс что это за программа на телефоне Добрый день, друзья. Для смартфонов на разных платформах существуют тысячи программ. Сейчас мы...
Экранная камера без скачивания
«Экранная Камера» — это компактная программа, позволяющая быстро и качественно захватывать любое видео с экрана монитора. Теперь вы можете без...
Adblock detector