Формулы кардано для 3 степени

Формулы кардано для 3 степени

Сведение кубического уравнения к приведенному виду

Рассмотрим кубическое уравнение:
(1) ,
где . Разделим его на :
(2) ,
где , , .
Далее считаем, что , и – есть действительные числа.

Приведем уравнение (2) к более простому виду. Для этого сделаем подстановку
.
;
;
.
Приравняем коэффициент при к нулю. Для этого положим
:
;
;
.
Получаем уравнение приведенного вида:
(3) ,
где
(4) ; .

Вывод формулы Кардано

Решаем уравнение (3). Делаем подстановку
(5) :
;
;
;
.
Чтобы это уравнение удовлетворялось, положим
(6) ;
(7) .

Решаем квадратное уравнение.
(8) .
Возьмем верхний знак “+”:
,
где мы ввели обозначение
.
Из (6) имеем:
.

Итак, мы нашли решение приведенного уравнения в следующем виде:
(5) ;
(9) ;
(10) ;
(7) ;
(11) .
Такое решение называется формулой Кардано.

Если мы, при выборе знака квадратного корня в (8), возьмем нижний знак, то и поменяются местами и мы не получим ничего нового. Величины и равны кубическим корням, поэтому они имеют по три значения. Из всех возможных пар и нужно выбрать такие, которые удовлетворяют уравнению (7).

Итак, алгоритм решения приведенного кубического уравнения
(3)
следующий.
1) Вначале мы определяем любое значение квадратного корня .
2) Вычисляем три значения кубического корня .
3) Используя формулу (7), для каждого значения , вычисляем значение :
.
В результате получаем три пары величин и .
4) Для каждой пары величин и , по формуле (5) находим значения корней приведенного уравнения (3).
5) Рассчитываем значения корней исходного уравнения (1) по формуле
.
Таким способом мы получаем значения трех корней исходного уравнения. При два или три корня являются кратными (равными).

На шаге 3) данного алгоритма можно поступить по другому. Мы можем вычислить три значения величины по формуле (10). И далее составить три пары корней и так, чтобы для каждой пары выполнялось соотношение
(7) .

Случай Q ≥ 0

Рассмотрим случай . При этом и являются действительными числами. Введем обозначения. Пусть и обозначают действительные значения кубических корней.

Найдем остальные значения корней и . Запишем и в следующем виде:
; ,
где – есть целое число;
– мнимая единица, .
Тогда
.
Присваивая значения , получаем три корня:
, ;
, ;
, .
Точно также получаем три корня :
;
;
.

Теперь группируем и в пары, чтобы, для каждой пары выполнялось соотношение
(7) .
Поскольку , то
.
Тогда
.
Отсюда получаем первую пару: .
Далее замечаем, что
.
Поэтому
; .
Тогда и являются еще двумя парами.

Теперь получаем три корня приведенного уравнения:
;
;
.
Их также можно записать в следующем виде:
(12) ; .
Эти формулы называются формулой Кардано.

При , . Два корня являются кратными:
; .
При все три корня являются кратными:
.

Случай Q . То есть и могут быть комплексными. Тогда для и можно выбрать любые значения кубических корней, между которыми выполняется соотношение
.

Формула Кардано для решения кубического уравнения

Итак, мы установили, что корни приведенного кубического уравнения

можно найти по формуле Кардано:
, ,
где
; ; ;
.

Однако, при , формула Виета являются более удобной.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 27-09-2016

Схема метода Кардано
Приведение кубических уравнений к трехчленному виду
Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи
Формула Кардано
Пример решения кубического уравнения

Схема метода Кардано

Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени ( кубических уравнений )

ax 3 + a1x 2 +
+ a2x + a3= 0,
(1)

где a, a1, a2, a3 – произвольные вещественные числа,

Вывод формулы Кардано состоит из двух этапов.

На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями .

На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.

Читайте также:  Загорается синий экран и компьютер перезагружается

Приведение кубических уравнений к трехчленному виду

Разделим уравнение (1) на старший коэффициент a . Тогда оно примет вид

x 3 + ax 2 + bx + c = 0, (2)

где a, b, c – произвольные вещественные числа.

Заменим в уравнении (2) переменную x на новую переменную y по формуле:

(3)

то уравнение (2) примет вид

В результате уравнение (2) примет вид

Если ввести обозначения

то уравнение (4) примет вид

y 3 + py + q= 0, (5)

где p, q – вещественные числа.

Уравнения вида (5) и являются трёхчленными кубическими уравнениями , у которых отсутствует член со второй степенью неизвестного.

Первый этап вывода формулы Кардано завершён.

Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи

Следуя методу, примененому Никколо Тартальей (1499-1557) для решения трехчленных кубических уравнений, будем искать решение уравнения (5) в виде

(6)

где t – новая переменная.

то выполнено равенство:

Следовательно, уравнение (5) переписывается в виде

(7)

Если теперь уравнение (7) умножить на t , то мы получим квадратное уравнение относительно t :

(8)

Формула Кардано

Решение уравнения (8) имеет вид:

В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:

В развернутой форме эти решения записываются так:

Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.

С другой стороны,

и для решения уравнения (5) мы получили формулу

которая и называется «Формула Кардано» .

Замечание . Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).

Пример решения кубического уравнения

Пример . Решить уравнение

x 3 – 6x 2 – 6x – 2 = 0. (13)

Решение . Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену

x = y + 2. (14)

Следовательно, уравнение (13) принимает вид

y 3 – 18y – 30 = 0. (15)

Теперь в соответствии с формулой (6) сделаем в уравнении (15) еще одну замену

(16)

то уравнение (15) примет вид

(17)

Далее из (17) получаем:

Отсюда по формуле (16) получаем:

Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу

или использовали формулу

Далее из равенства (18) в соответствии с (14) получаем:

Таким образом, мы нашли у уравнения (13) вещественный корень

Замечание 1 . У уравнения (13) других вещественных корней нет.

Замечание 2 . Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.

Создание программного обеспечения для решения кубических уравнений с использованием формулы Кардано

Симаков Егор Евгеньевич

Захарова Лидия Владимировна

Уже в древности люди осознали, как важно научиться решать алгебраические уравнения вида – ведь к ним сводятся очень многие вопросы естествознания. Также проводились исследования по получению формул для решения уравнений любой степени n, при помощи которых можно выразить корни уравнения через его коэффициенты, т.е., решить уравнение в радикалах. Однако только в XVI веке итальянским математикам удалось сформулировать алгоритм решения уравнений третьей и четвертой степеней.

Целью исследования является изучение существующих методов, а также разработка алгоритма и создание на его основе программного обеспечения для решения кубических уравнений на основе формулы Кардано.

1. Рассмотреть различные методы решения уравнений третьей степени.

Читайте также:  Микрофризы в играх при стабильном фпс

2. Изучить особенности применения формулы Кардано для решения кубических уравнений.

3. Создать программное обеспечение для решения кубических уравнений.

Методы решения кубических уравнений

В области комплексных чисел, согласно основной теореме алгебры, кубическое уравнение всегда имеет 3 корня (с учётом кратности). Так как каждый вещественный многочлен нечётной степени имеет хотя бы один вещественный корень, все возможные случаи состава корней кубического уравнения исчерпывается тремя, которые легко различаются с помощью дискриминанта

[2]:

Если Δ > 0, тогда уравнение имеет три различных вещественных корня.

Если Δ 2 = –1. Числа x = (z) (или Re z) и y = (z)(или Im z) называются соответственно вещественной и мнимой частями z. Множество всех комплексных чисел обозначается . Если комплексное число z = x + iy, то число называется сопряжённым к z. [1]

Наиболее распространенный метод решения кубических уравнений – метод перебора. [2] Сначала путём перебора находится один из корней уравнения (например, x1). Вторая стадия решения – это деление многочлена ax 3 + bx 2 + cx +d на двучлен x – x1 и решение полученного квадратного уравнения.

Алгоритм решения кубических уравнений с использованием формулы Кардано

В данном разделе статьи приведен подробный алгоритм решения уравнений третьей степени с помощи формулы Кардано. Данный алгоритм состоит из двух этапов. На первом этапе кубические уравнения приводятся к форме, в которой отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями. На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям. [3]

Рассмотрим алгоритм нахождения всех корней кубического уравнения на основе описанной выше формулы, а также ее тригонометрической интерпретации. [3,4] Приведем исходное уравнение к каноническому виду. Для этого сделаем замену переменного по формуле

: .

Раскрыв скобки в левой части уравнения, получим:

.

Уравнение приведено к каноническому виду:

Дискриминантом уравнения называется число . Найдем решение полученного уравнения в виде:

Число удовлетворяет этому равенству, если числа m и n удовлетворяют системе из двух уравнений:

Находим числа m и n:

Дальнейшее решение зависит от знака дискриминанта S.

1. Пусть дискриминант меньше нуля. Тогда уравнение имеет три различных корня.

Найдём модуль комплексных чисел

:

Аргумент числа равен (в зависимости от знака q):

Если , то

Если , то

Если , то

Для k=0, k=1, k=2 получаем решение:

Итак, если дискриминант меньше нуля, то уравнение имеет три различных действительных корня:

2. Пусть дискриминант больше нуля. Тогда уравнение имеет один действительный корень и два комплексно-сопряжённых.

При этом для любых комплексных значений корней необходимо выполнение условия:

.

Примем аргумент F действительных чисел, стоящих под знаком кубического корня, равным нулю. При этом модули этих чисел могут принимать отрицательное значение. Аргумент кубического корня будет принимать 3 значения: 0, 2*π/3, 4*π/3. Каждое решение y=y1, y=y2, y=y3будет состоять из суммы двух комплексных чисел .

Число z1 находится в группе из трёх чисел:

Число z2 находится в группе из трёх чисел:

Для действительных значений кубических корней выполняется обозначенное выше условие. Поэтому действительный корень уравнения . Учитывая равенство , получим два комплексно сопряжённых корня:

, .

Итак, если дискриминант больше нуля, то уравнение имеет один действительный корень и два комплексно-сопряжённых корня:

3. Дискриминант равен нулю. В этом случае уравнение имеет три действительных корня, и два корня из трёх обязательно совпадают друг с другом. Рассуждая точно так же, как в случае с положительным дискриминантом, учитывая равенство , из формул корней уравнения с положительным дискриминантом получим:

Итак, если дискриминант равен нулю, то уравнение имеет три действительных корня, и два корня из трёх обязательно совпадают друг с другом:

.

Теперь получим решение исходного кубического уравнения . Дискриминант этого уравнения равен:

Читайте также:  Удаленное администрирование sql сервером

В зависимости от знака дискриминанта S возможны три случая:

Если , то:

Если , то:

Если , то:

.

Аргумент F вычисляется по формулам, рассмотренным выше, исходя из знака q.

Реализация алгоритма в объектно-ориентированной среде программирования Delphi

Авторами статьи была создана программа в среде Delphi для решения кубических уравнений с использованием формулы Кардано по разработанному алгоритму, описанному выше.

Рис. 1. Интерфейс программы для решения кубических уравнений

Для решения уравнения пользователю необходимо ввести коэффициенты уравнения. Результат работы программы – коэффициенты уравнения в канонической форме (p и q), дискриминант (Q) и корни уравнения. Для создания интерфейса использовались следующие компоненты среды Delphi [5]:

Label – для информирования пользователя о назначении программы, обозначения предназначения полей ввода – вывода;

Button – для реализации основных действий программы (решения уравнения, очистки полей ввода-вывода, закрытия программы);

Edit – для организации ввода-вывода данных;

Panel и GroupBox – для группировки элементов на форме программы.

Рассмотрим код основных процедур программы.

Для решения уравнения необходимо объявить следующие переменные:

A, B, C, D – коэффициенты исходного уравнения;

p, q – коэффициенты преобразованного уравнения;

F – аргумент комплексного корня;

Re, Im – действительная и мнимая части комплексного корня;

x1, x2, x3, y1, y2 – корни уравнения.

В программе предусмотрен контроль корректности ввода данных:

if (edit1.Text=») or (edit2.Text=») or (edit3.Text=») or (edit4.Text=») then

Showmessage(‘Введите все коэффициенты уравнения’);

Процедуры Clear_Koeffs и Clear_Results осуществляют очистку полей ввода-вывода.

Процедура вычисления коэффициентов и дискриминанта преобразованного уравнения имеет следующий вид:

edit5.Text := FloatToStr(p); edit6.Text := FloatToStr(q);

Вычисление корней уравнения происходит в зависимости от знака дискриминанта:

Если дискриминант меньше нуля:

if QQ 0 then F:=Arctan(-2*Sqrt(-QQ)/q)+Pi;

if q=0 then F:=Pi/2;

if q=0 then x3:=-B/A/3;

Edit8.Text := FloatToStr(x1); Edit9.Text := FloatToStr(x2);

Если дискриминант больше нуля:

if QQ>0 then begin

if -q/2+Sqrt(QQ)>0 then y1:=exp(ln(abs(-q/2+Sqrt(QQ)))/3);

if -q/2+Sqrt(QQ) 0 then y2:=exp(ln(abs(-q/2-Sqrt(QQ)))/3);

if -q/2-Sqrt(QQ) 0 then y1:=-exp(ln(abs(-q/2))/3);

Edit8.Text := FloatToStr(x1); Edit9.Text := FloatToStr(x2);

В программе также организован программный контроль ввода коэффициентов. Для этого создан обработчик события KeyPress для соответствующих элементов типа Edit [6]:

if not (Key in [‘-‘, ‘1’..’9′, #8]) then Key := #0.

В рамках проведенного исследования было рассмотрено несколько способов решения кубических уравнений, в том числе, с использованием формулы Кардано. Были изучены различные нюансы применения этого метода, а также проведено исследование зависимости получаемых результатов от знака кубического дискриминанта. В статье также приведен подробный алгоритм, разработанный авторами статьи, на основе тригонометрической интерпретации формулы Кардано, а также рассмотрены основные процедуры созданного программного обеспечения в объектно-ориентированной среде Delphi.

Существует довольно много проблем в различных научных областях, решение которых сводится к изучению методов решения уравнений третьей и выше степеней. Таким образом, можно сделать вывод, что актуальность проведенного исследования заключается в практическом применении рассмотренных методов, а также созданного программного обеспечения как при изучении некоторых тем математики, физики в школе и ВУЗах, так и при решении прикладных задач из различных областей.

кубический уравнение формула кардано

1. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов. – М.: Наука, 1986.

2. Омельченко В.П., Э.В. Курбатова. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2005.

3. Пичурин Л.Ф. За страницами учебника алгебры. – М.: Просвещение, 1990.

4. Корн Г., Корн Т. Справочник по математики для научных работников и инженеров. – М.: Наука, 1973.

5. Фленов М.Е. Библия Delphi. – С-Пб: БХВ-Петербург, 2011.

6. Архангельский А.Я. Delphi 7. Справочное пособие. – М.: Бином, 2004.

Ссылка на основную публикацию
Умные часы для детей xiaomi mi bunny
Детские смарт-часы Xiaomi, изготовленные из прочного пластика различных оттенков, предназначены для отображения текущего времени и дополнительной информации (например, о пройденной...
Телефон с камерой лучше чем у айфона
В России начинаются продажи смартфонов iPhone XS и iPhone XS Max. Цены в этот раз просто заоблачные — средняя (256...
Телефон с горизонтальной камерой
Сегодня мало кого можно удивить телефоном с двумя основными камерами. А вот сдвоенную фронтальную камеру встретишь далеко не в каждом...
Улучшить качество связи мтс
Усилитель сигнала МТС– специальный прибор, который необходим для того, чтобы предоставлять более сильный сигнал сотовой связи. Невозможно звонить или отправлять...
Adblock detector