Формула нахождения нулей функции

Формула нахождения нулей функции

Нуль функции в математике — элемент из области определения функции, в котором она принимает нулевое значение. Например, для функции f <displaystyle f> , заданной формулой

f ( x ) = x 2 − 6 x + 9 . <displaystyle f(x)=x^<2>-6x+9,.>

f ( 3 ) = 3 2 − 6 ⋅ 3 + 9 = 0 <displaystyle f(3)=3^<2>-6cdot 3+9=0> .

Понятие нулей функции можно рассматривать для любых функций, область значений которых содержит нуль или нулевой элемент соответствующей алгебраической структуры.

Для функции действительного переменного f : R → R <displaystyle f:mathbb o mathbb > нулями являются значения, в которых график функции пересекает ось абсцисс.

Нахождение нулей функции часто требует использования численных методов (к примеру, метод Ньютона, градиентные методы).

Одной из нерешённых математических проблем является нахождение нулей дзета-функции Римана.

Корень многочлена [ править | править код ]

Основная теорема алгебры утверждает, что каждый многочлен степени n имеет n комплексных корней, учитывая их кратность. Комплексные корни всегда входят сопряжёнными парами. Каждый многочлен нечётной степени имеет по крайней мере один действительный корень. Связь между корнями многочлена и его коэффициентами устанавливает теорема Виета.

Комплексный анализ [ править | править код ]

Простой нуль аналитической в некоторой области G ⊂ C <displaystyle Gsubset mathbb > функции f <displaystyle f> — точка z 0 ∈ G <displaystyle z_<0>in G> , в некоторой окрестности которой справедливо представление f ( z ) = ( z − z 0 ) g ( z ) <displaystyle f(z)=(z-z_<0>)g(z)> , где g <displaystyle g> аналитична в z 0 <displaystyle z_<0>> и не обращается в этой точке в нуль.

Нуль порядка k <displaystyle k> аналитической в некоторой области G ⊂ C <displaystyle Gsubset mathbb > функции f <displaystyle f> — точка z 0 ∈ G <displaystyle z_<0>in G> , в некоторой окрестности которой справедливо представление f ( z ) = ( z − z 0 ) k g ( z ) <displaystyle f(z)=(z-z_<0>)^g(z)> , где g <displaystyle g> аналитична в z 0 <displaystyle z_<0>> и не обращается в этой точке в нуль.

Нули аналитической функции изолированы.

Другие специфические свойства нулей комплексных функций выражаются в различных теоремах:

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Читайте также:  На айфоне сами нажимаются кнопки

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

График функции у=k/x выглядит следующим образом:

По данному рисунку видно, что нулей функции не существует.

Рассмотрим примеры нахождения нулей функции не по графику, а по функции, заданной определенной формулой.

Пример №1

Найти нули функции (если они существуют):

Решение

а) для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение.

Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

б) аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2

Найти нули функции у=f(x) по заданному графику.

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Вывод: для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.

Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак, называется промежутками знакопостоянства.

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

Читайте также:  User guide что это за программа

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3

Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Решение уравнения F(x) = 0, или нахождение нулей функции, осуществ­ляется с помощью функции:

В качестве первого аргумента ей передается имя функции, задающей ис­ходное уравнение, вторым аргументом служит начальное приближение к кор­ню. Возвращаемым значением функции fzero является нуль функции name в окрестности точки x0. Определим, в качестве примера, нули функции на отрезке от 0 до pi. В качестве начального приближения примем х0 = 1.

Читайте также:  Сколько трафика тратится на просмотр видео ютуб

Если требуется найти корень функции, отличной от стандартной (встроен­ной в систему MATLAB) и тем самым не имеющей в рамках системы MATLAB фиксированного имени, то нужно приписать некоторое имя выражению, вычис­ляющему функцию.

Пусть, например, требуется найти корни уравнения cos(x) = x, что экви­валентно нахождению нулей функции, вычисляемой по формуле у = cos(x) – x, не имеющей в рамках системы MATLAB фиксированного имени. В этом случае нужно в любом простейшем текстовом редакторе (можно в окне редактора-отладчика MATLAB) набрать две строки следующего кода:

и запомнить их в файле MyFunction1.m, который нужно разместить в текущем каталоге системы MATLAB (узнать его можно командой cd). После этого мож­но воспользоваться функцией fzero:

Если найдено абсолютно точное значение корня, то значение функции в этой точке равно нулю. Таким образом, величина функции в приближенно най­денном нуле косвенно характеризует погрешность результата. Чтобы управлять огрешностью, нужно осуществлять вызов функции fzero с тремя аргументами:

fzero(name, x0, tol),

где параметр tol задает требуемую величину погрешности (ошибки). Повторив предыдущие вычисления, потребовав большей точности расчетов (то есть меньшей погрешности):

х = fzero(‘MyFunction1’,pi/2, 1-8)

х =0.73908513263090 MyFunction1(x)

откуда видно, что действительно достигнута большая точность нахождения ну­ля функции.

Еще раз подчеркнем, что функция fzero находит нули только вещественно-значных функций одной вещественной переменной. Однако часто бывает необ­ходимо найти комплексные корни вещественнозначных функций, особенно в случае многочленов. Для этой цели в системе MATLAB существует специаль­ная функция roots, которой в качестве аргумента передается массив коэффици­ентов многочлена. Например, для многочлена х 4 — 3х 3 + Зх 2 — Зх + 2, имеющего два вещественных (1 и 2) и два комплексных корня (i и -i), нужно сначала сформировать массив его коэффициентов (расположив по порядку убывания степени х):

Coef = [ 1, -3, 3, -3, 2 ],

после чего вызвать функцию roots:

0.00000000000000 +1.00000000000000i 0.00000000000000 -1.00000000000000i 1.00000000000000

В задаче о нахождении нулей функции сложным моментом является нахо­ждение начального приближения к нулю функции, а также априорная оценка их количества. Поэтому важно параллельно с применением функций типа roots или fzero визуализировать поведение искомых функций на том или ином отрез­ке значений аргумента (построить график функции).

Ссылка на основную публикацию
Умные часы для детей xiaomi mi bunny
Детские смарт-часы Xiaomi, изготовленные из прочного пластика различных оттенков, предназначены для отображения текущего времени и дополнительной информации (например, о пройденной...
Телефон с камерой лучше чем у айфона
В России начинаются продажи смартфонов iPhone XS и iPhone XS Max. Цены в этот раз просто заоблачные — средняя (256...
Телефон с горизонтальной камерой
Сегодня мало кого можно удивить телефоном с двумя основными камерами. А вот сдвоенную фронтальную камеру встретишь далеко не в каждом...
Улучшить качество связи мтс
Усилитель сигнала МТС– специальный прибор, который необходим для того, чтобы предоставлять более сильный сигнал сотовой связи. Невозможно звонить или отправлять...
Adblock detector