Формула количества теплоты в проводнике

Формула количества теплоты в проводнике

Природа тепла в проводниках

Удобно пользоваться аналогиями. Часто совокупность электронов рассматривают как электронный газ. Так, например, поступают при определении теплопроводности газов методом нагревания нити.

Из законов молекулярной физики известно, что температура и кинетическая энергия – два взаимоопределяющих параметра. Чем выше скорость движения молекул, тем выше температура. И наоборот: чем выше температура, тем быстрее движутся молекулы.

Теперь будем рассматривать электронный газ и более крупные частицы в нем – атомы в узлах кристаллической решетки проводника. При движении электроны – а именно это и происходит, когда наличествует электрический ток – могут соударяться с атомами проводника, чем вызывают изменение их кинетической энергии. Часть ее может быть потрачена на совершение атомом скачка – выхода из узла, часть выделится в виде тепла.

Рис. 1. Столкновение электронов с атомами решетки.

Другая полезная аналогия – трение жидкости (газа) о стенки сосуда. Здесь происходит тоже самое – движению электронов мешают силы трения (сопротивления). Работа, затрачиваемая на их преодоление, переходит в тепловую.

Помимо этого, движущиеся электроны, соударяясь, могут отцеплять от атомов стационарные электроны и занимать их места на орбиталях. Во время этих процессов происходит изменение энергии. Какая-то ее часть может вносить вклад в общий нагрев проводника.

Таковы механизмы. Но закон Джоуля-Ленца носит качественный характер. Его выводили эмпирическим путем, постановкой опытов с разными проводниками различной длинны и площади сечения, с разными значениями силы тока. В ходе них были выявлены некоторые закономерности:

  • Количество выделяющегося тепла прямо пропорционально квадрату силы тока.
  • Выделяемое тепло обратно пропорционально проводимости вещества. Например, медный проводник выделяет тепла меньше, чем железо, что связано с большей проводимостью меди.
  • При увеличении площади сечения проводника количество теплоты уменьшается.
  • При увеличении длинны проводника – количество теплоты возрастает.

Последние три характеристики – длинна, площадь и удельная проводимость проводника – определяют такую величину, как сопротивление.

Таким образом, нагревание проводника прямо зависит от его сопротивления и от квадрата силы тока – это словесная формулировка закона Джоуля-Ленца. Он достаточно универсален, справедлив также для полупроводников и электролитов.

Читайте также:  Силиконовый коврик для противня

Рис. 2. Лампа накаливания.

На явлении нагревания проводников основана работа ламп накаливания, дуговой сварки, электрообогревателей. Потери энергии на преодоление сопротивления и выделяющееся тепло учитывают при проектировании электрических цепей различных приборов – от чайников до процессоров ЭВМ.

Математическая запись

Существует несколько вариантов записи закона Джоуля-Ленца. Первый, наиболее привычный, называется интегральной формой:

$Q = intlimits_^ I^2 cdot Rdt$

$Q = I^2 cdot R cdot t$

Она наиболее удобна, по ней как правило выполняют определение количества выделяемого на проводниках тепла на практике. Она же является математическим эквивалентом качественной формулировки закона, данной ранее. В дифференциальном виде формула закона Джоуля-Ленца записывается следующим образом:

$omega = j cdot E^2$, где $omega$ – энергия, выделяемая в единице объема, j – плотность электрического тока, а E – его напряженность.

Рис. 3. Плотность электрического потока.

Задачи

Решение:

$I^2 cdot R$ – есть мощность тока. Разделив Q на t, получим тепловую мощность. Тогда необходимое сопротивление рассчитаем по формуле:

Что мы узнали?

В ходе урока рассмотрели тепловое действие тока в проводниках и его причины, выяснили эмпирические закономерности, легшие в основу закона Джоуля-Ленца, а также рассмотрели его интегральную и дифференциальную формулировки. В закрепление урока решили задачу.

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Читайте также:  Как заказать товар через интернет

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Читайте также:  Игра с бумажками на лбу правила

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Ссылка на основную публикацию
Умные часы для детей xiaomi mi bunny
Детские смарт-часы Xiaomi, изготовленные из прочного пластика различных оттенков, предназначены для отображения текущего времени и дополнительной информации (например, о пройденной...
Телефон с камерой лучше чем у айфона
В России начинаются продажи смартфонов iPhone XS и iPhone XS Max. Цены в этот раз просто заоблачные — средняя (256...
Телефон с горизонтальной камерой
Сегодня мало кого можно удивить телефоном с двумя основными камерами. А вот сдвоенную фронтальную камеру встретишь далеко не в каждом...
Улучшить качество связи мтс
Усилитель сигнала МТС– специальный прибор, который необходим для того, чтобы предоставлять более сильный сигнал сотовой связи. Невозможно звонить или отправлять...
Adblock detector