Что такое замкнутая система

Что такое замкнутая система

Замкнутая и не замкнутая системы.

В замкнутой системе нет взаимодействия с окружением. В незамкнутой — есть.
Изолированная система (замкнутая cистема) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики).

Система называется замкнутой(изолированной 1 ), если ее компоненты не взаимодействуют с внешними сущностями, а также отсутствуют потоки вещества, энергии и информации из системы или в нее.

Примером физической замкнутой системы может служить горячая вода и пар в термосе. В замкнутой системе количество вещества и энергии остается неизменным. Количество же информации может изменяться как в сторону уменьшения, так и увеличения – в этом просматривается еще одна особенность информации как исходной категории мироздания. Замкнутая система является некоторой идеализацией (модельным представлением), поскольку полностью изолировать какую-то совокупность компонентов от внешних воздействий невозможно.

Закон сохранения импульса

Закон сохранения импульса формулируется так:

если сумма внешних сил, действующих на тела системы, равна нулю, то импульс системы сохраняется.

Тела могут только обмениваться импульсами, суммарное же значение импульса не изменяется. Надо только помнить, что сохраняется векторная сумма импульсов, а не сумма их модулей.

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы.

Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и– импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Рис.1

При указанных допущениях законы сохранения имеют вид

(1)
(2)
Произведя соответствующие преобразования в выражениях (1) и (2), получим
(3)
(4)
откуда
(5)
Решая уравнения (3) и (5), находим
(6)
(7)
Разберем несколько примеров.

1. При ν2=0
(8)
(9)

Проанализируем выражения (8) в (9) для двух шаров различных масс:

Читайте также:  Как называется планшет для чтения книг

а) m1=m2. Если второй шар до удара висел неподвижно (ν2=0) (рис. 2), то после удара остановится первый шар (ν1=0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара (ν2=ν1);

Рис.2

б) m1>m2. Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (ν1 ν1 ) (рис. 3);

Рис.3

в) m1 >m1 (например, столкновение шара со стеной). Из уравнений (8) и (9) следует, что ν1= —ν1; ν2 ≈ 2m1ν2/m2.

2. При m1=m2 выражения (6) и (7) будут иметь вид ν1= ν2; ν2= ν1; т. е. шары равной массы как бы обмениваются скоростями.

Абсолютно неупругий удар — соударение двух тел, в результате которого тела соединяются, двигаясь дальше как единое целое. Абсолютно неупругий удар можно продемонстрировать с помощью шаров из пластилина (глины), которые движутся навстречу друг другу (рис. 5).

Рис.5

Если массы шаров m1 и m2, их скорости до удара ν1 и ν2, то, используя закон сохранения импульса

где v — скорость движения шаров после удара. Тогда
(15.10)
В случае движения шаров навстречу друг другу они вместе будут продолжать движение в ту сторону, в которую двигался шар с большим импульсом. В частном случае, если массы шаров равны (m1=m2), то

Определим, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие от их скоростей, а не от самих деформаций, то мы имеем дело с дисипативными силами, подобным силам трения, поэтому закон сохранения механической энергии в этом случае не должен соблюдаться. Вследствие деформации происходит уменьшение кинетической энергии, которая переходит в тепловую или другие формы энергии. Это уменьшение можно определить по разности кинетической энергии тел до и после удара:

Используя (10), получаем

Если ударяемое тело было первоначально неподвижно (ν2=0), то

и

Когда m2>>m1 (масса неподвижного тела очень велика), то ν >m2), тогда ν≈ν1 и почти вся энергия тратится на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.
Абсолютно неупругий удар — это пример потери механической энергии под действием диссипативных сил.

Замкнутая и не замкнутая системы.

В замкнутой системе нет взаимодействия с окружением. В незамкнутой — есть.
Изолированная система (замкнутая cистема) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики).

Система называется замкнутой(изолированной 1 ), если ее компоненты не взаимодействуют с внешними сущностями, а также отсутствуют потоки вещества, энергии и информации из системы или в нее.

Примером физической замкнутой системы может служить горячая вода и пар в термосе. В замкнутой системе количество вещества и энергии остается неизменным. Количество же информации может изменяться как в сторону уменьшения, так и увеличения – в этом просматривается еще одна особенность информации как исходной категории мироздания. Замкнутая система является некоторой идеализацией (модельным представлением), поскольку полностью изолировать какую-то совокупность компонентов от внешних воздействий невозможно.

Читайте также:  Расширение sgn чем открыть

Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы

замкнутая система — [среда] применения (штриховое кодирование): Система [среда] с применением штрихового кодирования, предназначенная для использования обособленной группой пользователей. Примечание Обычно такая система представляет собой группу пользователей в… … Словарь-справочник терминов нормативно-технической документации

замкнутая система — система с обратной связью — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] замкнутая система закрытая система Система, изолированная от внешней среды. Конечно,… … Справочник технического переводчика

ЗАМКНУТАЯ СИСТЕМА — см. Система экологическая замкнутая. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

ЗАМКНУТАЯ СИСТЕМА — ЗАМКНУТАЯ СИСТЕМА, то же, что изолированная система (см. ИЗОЛИРОВАННАЯ СИСТЕМА) … Энциклопедический словарь

ЗАМКНУТАЯ СИСТЕМА — (1) в механике система тел, на которые не действуют внешние силы, т. е. силы, приложенные со стороны других, не входящих в рассматриваемую систему тел; (2) в термодинамике система тел, которая не обменивается с внешней средой ни энергией, ни… … Большая политехническая энциклопедия

ЗАМКНУТАЯ СИСТЕМА — то же, что изолированная система. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия

ЗАМКНУТАЯ СИСТЕМА — элементов, замкнутая система функций, система элементов jn некоторого линейного нормированного пространства Нтакая, что любой элемент можно сколь угодно точно приблизить в метрике пространства Нконечной линейной комбинацией элементов из этой… … Математическая энциклопедия

замкнутая система — uždaroji sistema statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminė sistema, kuri su aplinka arba kitomis sistemomis nesikeičia medžiaga. atitikmenys: angl. closed system vok. geschlossenes System, n; System mit Rückführung … Penkiakalbis aiškinamasis metrologijos terminų žodynas

замкнутая система — uždaroji sistema statusas T sritis chemija apibrėžtis Termodinaminė sistema, kuri nesikeičia medžiaga su aplinka. atitikmenys: angl. closed system rus. закрытая система; замкнутая система … Chemijos terminų aiškinamasis žodynas

замкнутая система — uždaroji sistema statusas T sritis fizika atitikmenys: angl. closed system vok. abgeschlossenes System, n; geschlossenes System, n rus. замкнутая система, f pranc. système fermé, m … Fizikos terminų žodynas

Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения и движения всех остальных.

Материальное абсолютно твердое тело мы также будем рассматривать как систему материальных точек, образующих это тело и связанных между собой так, что расстояния между ними не изменяются, все время остаются постоянными.

Классическим примером механической системы является солнечная система, в которой все тела связаны силами взаимного притяжения. Другим примером механической системы может служить любая машина или механизм, в которых все тела связаны шарнирами, стержнями, тросами, ремнями и т.п. (т.е. различными геометрическими связями). В этом случае на тела системы действуют силы взаимного давления или натяжения, передаваемые через связи.

Совокупность тел, между которыми нет никаких сил взаимодействия (например, группа летящих в воздухе самолетов), механическую систему не образует.

Силы, действующие на точки или тела системы, можно разделить на внешние и внутренние.

Внешними называются силы, действующие на точки системы со стороны точек или тел, не входящих в состав данной системы.

Внутренниминазываются силы, действующие на точки системы со стороны других точек или тел этой же системы. Будем обозначать внешние силы символом — , а внутренние — .

Читайте также:  Одиночные игры с открытым миром на пк

Как внешние, так и внутренние силы могут быть в свою очередь или активными, или реакциями связей.

Реакции связейили просто – реакции, это силы которые ограничивают движение точек системы (их координаты, скорость и др.). В статике это были силы заменяющие связи.

Активными или задаваемыми силаминазываются все силы, кроме реакций.

Разделение сил на внешние и внутренние является условным и зависит от того, движение какой системы тел мы рассматриваем. Например, если рассматривать движение всей солнечной системы в целом, то сила притяжения Земли к Солнцу будет внутренней; при изучении же движения Земли по её орбите вокруг Солнца та же сила будет рассматриваться как внешняя.

Внутренние силы обладают следующими свойствами:

1. Геометрическая сумма (главный вектор) всех внутренних сил системы равняется нулю. По третьему закону динамики любые две точки системы действуют друг на друга с равными по модулю и противоположно направленными силами и , сумма которых равна нулю.

2. Сумма моментов (главный момент) всех внутренних сил системы относительно любого центра или оси равняется нулю. Если взять произвольный центр О, то . Аналогичный результат получится при вычислении моментов относительно оси. Следовательно, и для всей системы будет:

Из доказанных свойств не следует, однако, что внутренние силы взаимно уравновешиваются и не влияют на движение системы, так как эти силы приложены к разным материальным точкам или телам и могут вызывать взаимные перемещения этих точек или тел. Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело.

Замкнутая система – это система, на которую не действуют внешние силы.

Примером физической замкнутой системы может служить горячая вода и пар в термосе. В замкнутой системе количество вещества и энергии остается неизменным. Замкнутая система является некоторой идеализацией (модельным представлением), поскольку полностью изолировать какую-то совокупность компонентов от внешних воздействий невозможно.

19.Закон сохранения импульса.

Закон сохранения импульса: Векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия.

Обозначим массы двух тел и и скорости до взаимодействия , а после взаимодействия (столкновения)

По третьему закон Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить

Для изменений импульсов тел при их взаимодействии на основании Импульса силы можно записать так

Для первого тела:

Для второго тела:

И тогда у нас получается, что закон сохранения импульсов выглядит так:

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равны нулю, сумма импульсов тел остается неизменной.

Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета.

— Время взаимодействия тел

— Импульс 1 тела до взаимодействия

— Импульс 2 тела до взаимодействия

— Импульс 1 тела после взаимодействия

— Импульс 2 тела после взаимодействия

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Ссылка на основную публикацию
Что такое django python
Django Тип каркас веб-приложений Автор РазработчикDjango Software FoundationНаписана наPython[2]Интерфейсвеб-интерфейсОперационная системакроссплатформенностьПервый выпуск2005[1]Последняя версия 3.0.4 ( 4 марта2020 ) [3] Лицензиямодифицированная лицензия...
Чем чистить датчик абсолютного давления
ВСЁ СВОИМИ РУКАМИ 12.06.2018 . . После покупки Шевроле Лачетти оказалось, что эта первая моя машина, на которой был установлен...
Чем хорош увлажнитель воздуха отзывы
у нас на работе стоял, попеременно двигали каждый к себе поближе, ибо да, с ним как-то лучше, мне лично глазам...
Что такое hangouts и для чего
Хэкгаутс что это за программа на телефоне Добрый день, друзья. Для смартфонов на разных платформах существуют тысячи программ. Сейчас мы...
Adblock detector